Revision Exercise for Home Test 2

Question 1. Show by definition that

(a)
$$\lim_{x \to 3} \frac{x^3 - 9}{2x^2 - 9} = 2,$$
 (b) $\lim_{x \to 1-} \frac{x}{1 - x} = \infty.$

Question 2. Show that the function f(x) = 1/x is uniformly continuous on $[1, \infty)$, but it is not uniformly continuous on $(0, \infty)$.

Question 3. Let $f : [0, \pi/2] \to \mathbb{R}$ be defined by $f(x) = \sup\{x^2, \cos x\}$. Show that f has an absolute minimum. Moreover, show that if f attains its minimum at x_0 , then x_0 is a solution to the equation $\cos x = x^2$.

Question 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous periodic function with period p > 0. i.e., f(x+p) = f(x) for all $x \in \mathbb{R}$. Show that

- (a) f has an absolute maximum.
- (b) f is uniformly continuous on \mathbb{R} .

Question 5. Let $f : \mathbb{R} \to \mathbb{R}$ be uniformly continuous on \mathbb{R} with f(0) = 0. Prove that there exists some C > 0 such that

$$|f(x)| \le 1 + C|x|, \quad \forall x \in \mathbb{R}.$$

(Hint: You may apply the Well-Ordering Property of \mathbb{N} .)